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INSTRUMENTAL VARIABLES ESTIMATION 
AND THE COEFFICIENT OF DETERMINATION 

Halûk ERLAT* 

We first demonstrate that Instrumental Variables 
(IV) may be viewed as a two-s tep OLS estimator. 
Subsequently, we show that the coefficient of 
determination based on IV residuals does not lie 
between 0 and 1. As an alternative we suggest the 
use of the coefficient of determination from the second 
step of the two-s tep OLS interpretation of IV. The 
properties of said R2 are investigated and its relati-
onship to the R2 suggested by Carter and Nagar 
for simultaneous equations is examined. 

1. Introduction 

The coefficient of determination (R2) is a popularly used 
statistic by applied econometricians. This fact alone warrants 
showing extreme care in using the proper R2 for the particular 
statistical model utilised. For example, for the linear regression 
model without an intercept term which has been estimated by 
Ordinary Least Squares (OLS), the usual R2 defined in terms of 
the mean deviation form of the data is inappropriate. Such a 
statistic would not lie between zero and unity (Aigner (1971: 
85-90)). The appropriate R2 would be the one defined in terms 
of raw data (i.e., data not in mean-deviation form). 

Our concern here is with a similar problem. We shall consider 
estimating a single linear equation by Instrumental Variables 
(IV) and shall suggest an R2 statistic which may be properly 
utilised under such conditions. With this in mind, we shall first 
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demonstrate that IV estimation may be viewed as a two-step 
OLS procedure. This point is definitely not original; it would not 
be far from the truth to admit that, for the present author, it 
was inspired by the Two-Stage Least Squares (2SLS) estimation 
method utilised to estimate a single linear equation within a 
system of simultaneous equations. In the literature, this result 
was obtained with a totally different motivation by Sargan (1958); 
l iviatan (1963) and Wallis (1967) suggested its use within the 
context of distributed lag estimation. Finally, a demonstration 
in relation to the Limited Information Iterated Instrumental 
Variables (LJIV) method is given by Dhrymes (1971: 174-175). 

We shall next show that the usual R2 obtained by using IV 
residuals is not the appropriate statistic to use since it does not 
lie between 0 and 1 but between - oo and 1. We shall then suggest 
using the coefficient of determination from the second step of 
the two-step OLS interpretation of IV. The properties of said R2 

will be investigated and compared with the R2 statistic suggested 
by Carter and Nagar (1977) for simultaneous equations. 

2. The Model 

We have the following single regression equation, 

(1) y = X (3 + u 

where y is Txl, X is TxK, p is Kxl and u is Txl. Letting k denote 
ihe number of explanatory variables, K = k + 1 if (1) contains 
an intercept term and K = k if it does not. 

The equation in (1) may constitute a single-equation model 
implying a unilateral "causality" between the explanatory 
variables and the dependent variable or it may be an identified 
member of a system of simultaneous equations, interdependeritly 
related to the other equations in the system. In either case, it 
will be governed by the following set of assumptions : 

A.l The vector of disturbances u has zero mean and variance-
covariance matrix a2IK. 

4 

A.2 The matrix of observations on the explanatory variables, 
namely X, is correlated with the vector of disturbances u, so 
that plim T_ 1Xu^0. 
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A.3 Let there exist a TxK matrix of instrumental variables Z 
such that, 

a. the matrices Z'Z and Z'X both have rank K, 
b. plim T_1Z'Z = Mzz and plim T xZ'X = Mzx are finite and 

nonsingular, 
c. plim T_1Z'u = 0, 
d. T"1/2Z'u converges in distribution to N(0, a2Mzz). 

Assumption A.2 implies that at least one of the columns of 
X is correlated with the elements of the disturbance vector u, We 
know that this constitutes a violation of the basic assumptions of 
the linear regression model and renders the OLS estimator of 
¡3 biased and inconsistent. 

Assumption A.3 indicates that the instrumental variables 
satisfy the properties of being uncorrelated with the disturbance 
term (A.3.c) and being correlated with the explanatory variables 
(A.3.b). It fur ther requires that T1/2 Z u have a well-defined 
asymptotic distribution (A.3.d). This last assumption is necessary 
as the first three assumptions in A.3 may, in certain cases, not 
be sufficient to establish the asymptotic distribution of the IV 
estimator of ¡3. (For a detailed discussion and a case in point, see 
Schmidt (1976: 102-105).) 

3. IV as Two-Step OLS 

The IV principle seeks to provide us with estimators of (3 
which are at least consistent under A,2. The IV estimator is 
usually derived in the following way. 

Let u be a vector of residuals obtained by using any estimator 
A A A 

of (3, say ¡3; i.e., u = y - Xj3. If (3 is obtained by solving the following 
set of K equations; 

(2) Z'u = Z'y — Z'X ¡3 = 0 
A 

then it would be the IV estimator of (J, namely ¡3iV and, by A.3.a, 
would be calculated as, 

(3) Pif = (Z'X)-1 Z'y 
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The asymptotic distribution of i3IV may be proved, under A.3 
(b,c,d), to be 

(4) N (p , Mzx
 :iMzz Mxs

ml) 

(see Schmidt (1976 : 101-102)) where the covariance matrix would 
be consistently estimated by 

( 5 ) ( z ' x y t z ' z ( X ' z y 1 

Cx nd where 

( 6 ) • = ( y — X p t v ) ' ( y —X p V j / r 

Now consider the following two-step procedure : 

Step 1 : Regress, by OLS, the columns of X on Z to obtain 

the fitted values X = Z(Z'Z) "Z'X. 

Step 2 : Regress, again by OLS, y on X to obtain 

(7) P = (X'XJ-'X'y - (X'ZfZ'ZJ-tZ'XJ^X'ZfZ'ZytZ'y 

First, note that, by A.3.a, 

( 8 ) p = ( z ' x y ^ z ( x > z y x > z ( z ' z y ^ ' y = ( z ' x y z ' y = pJF 

i.e., (3 is identical to the IV estimator of ¡3. 

Secondly, since (3 = ¿3 + (X'X) -1X'u, we may express, 

( 9 ) t 1 ' 2 ( P - p ; = ( T - 1 x , x y 1 r 1 ' 2 x ' u 

Hence, if we can show that, (a) plim T_1X'X is finite and nonsin-
gular, and (b) T 1/2X'u has a well-defined asymptotic distribution, 

we may then establish the consistency of (3 and the asymptotic 

distribution of T1/2(^ - ¡3). 

To establish point (a) we take the probability limit of T_1X'X; 
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( 1 0 ) plim T - ] X > X = plim ( T ' ] X ' Z ( T - Z ' Z J ^ T ^ Z ' X ) 

= M X z M z z ' ] M z x 

by A.3.b and, of course, is nonsingular by the same assumption. 

To establish point (b), we note that 

( I D t - ^ x ' u = T 1 x 3 z ( T ' 1 z ) z y 1 T - 1 i 2 z 3 u 

and, since by A.3b and d, plim T *X'Z - Mxz, plim T'Z'Z = Mzz 
and T 1/2Z'u is asymptotically normal with mean zero and co-
variance matrix a2Mzz, it follows that, asymptotically, 

( 1 2 ) T- l 2 X ' u ~ N ( 0 , cv 2 M x z M z z ^ M z x ) 

We may, then, conclude that (1) plim JTX'U = 0 so that 

( 1 3 ) plim p = p + ( p l i m T - ' X ' X ) - 1 plim T * X ' u = p 

i.e., ¡3 is consistent, and (2) that asymptotically, 

( 1 4 ) T 1 ' 2 f p — p j ~ N ( 0 , ( J 2 ( M x z M z z 1 M z x ) - 1 ) 

But note that, by A.3.b, 

( 1 5 ) g ^ M x z M ^ M z x ) - 1 = v 2 M z x 1 M z z M x z 1 

~ A 
so that P and j3IV have the same asymptotic distribution. We have 
thus proved, 

Theorem 1 : The two-step OLS estimator (3; 
A 

i. is identical to Piv, 

ii, is consistent and asymptotically distributed as 

N(0, ^(MxzMz^MzJ·1), which is identical to the asymptotic 
A 

distribution of ¡3IV. 

In proving the consistency of the two-step estimator, nothing 
is mentioned about the consistency of the estimators in the first 
step regression. Letting C denote the KxK matrix of coefficients 

/ 
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f rom this regression, we have X = ZC where C = (Z'Z) Since 
the consistency of the two - step estimator requires that plim 

T_1X'u = 0, we take an alternative look at plim T^X'u; 

(16) plim T-JX'u = (plim C') (plim T^Z'u) 

Since plim T"1Z,u = 0 by A.3.c, all that is needed for plim T^X'u-O 
to hold is that plim C = A < oo. A need not equal C; i.e., C need 
not be a consistent estimator of C. We have thus proved, 

Corollary l.l : The consistency of the two-step OLS version 
of IV estimation does not require the coefficient estimators of 
the first step regression to be consistent. 

In the discussion above we said nothing about how the matrix 
of instruments may be formed. In fact, the columns of the matr ix 
Z may consist of direct observations on the variables which act 
as instrumental variables or they may be formed by some esti-
mation or fitting procedure. The latter situation may arise when 
there are more than enough directly observed variables which 
may act as instrumental variables. Denoting the matrix of all 
such likely candidates by Z* which is TxK* and K* >: K, any 
TxK submatrix of Z* would qualify as the Z matr ix but, in each 
case, a certain amount of information would not be utilised in 
consistency estimating (3. One way(1) of making use of all the 
columns of Z* is to regress the columns of X on Z*, obtain the 

matrix of fitted values, say X*, and use X* as the matrix of 

instruments. X* obviously satisfies the requirements of an IV 
matrix since its columns consist of linear combinations of the 
columns of Z* which are unco r r ec t ed with u, and since it is 
obtained by maximising the multiple correlation between each 
column of X and the columns of Z*. 

(l) Another way of obtaining fitted values, in. the context of simultaneous equations, is to 
use the estimated restricted reduced £orm, as in the case of the LIIV estimator mentioned 
above. The ensuing conclusions will not be applicable in this case, however, since the 
fitted values so obtained will not be orthogonal to the resultant residuals (see 
Dhrymes (1971: 171)). 
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The IV estimator now becomes, 

(17) P i f .= (X^XJ^X^y 

= (X'Z*(Z*''Z*)-1Z*3X)-:lXiZ*(Z*'Z*)~JZ*yy 

= ( X ^ X * ) - 1 ^ * ^ 

The last equality in (17) indicates that the present %v is also a 
two-step OLS estimator. That it gives results identical to that 
of the two-step OLS precedure described above is easy to de-
monstrate. Within the context of the two-step procedure described 

previously, the first step would consist of regressing X on X* to 
obtain 

( i 8 ) x * * - x * ( x ^ x y t x ^ x 

But X*'X* = X*'X so that X** = X*, and the first step of both 
two-step procedures yield identical results. Since the second step 
is the same in both instances, we have demonstrated our con-
tention. 

We may thus conclude; 

Corollary 1.2 : If the matrix of instruments Z consist only of 
directly observable variables, then the two-step procedure of 
Theorem 1 will still yield IV estimators even if the coulmn dimen-
sion of Z is greater than K. 

Remark 1 · We have, so far, couched our discussion in terms 
of all the explanatory variables in equation (1) even though, in 
interpreting A.2 we pointed out that the correlation between X and 
u may only hold for a single column of X. This implies that if 
only a subset of the columns of X are correlated with u, then the 
remaining columns may act as their own instruments. Hence, 
partitioning X as X = (X1} X2) where X is TxKlf i = 1,2 and 
Ki + K2=:K, the instrument matrix may be defined a s Z = (Zi, X2) 
where Zi is TxKi* and Ki* > Ki. To see that Theorem 1, Corrolaries 
1.1 and 1.2 still hold in this case, all we need to show is that, in 
the first step of the two-step procedure, the predicted value of 
K 2 is identical to itself. For this purpose define S2 = Co7, IK2) , where 
0 is Ki*xK2, and express X2 as X2 = ZS2. Then, 
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( 1 9 ) x 2 = z ( r z y 1 r x 2 = z ( ? z y 1 r z s 2 = -

Thus, in the second step only the fitted values of Xi need be used; 
X2 remains unaltered.(2) 

Remark 2 : We shall, for future reference consider the rela-
tionship between the IV residuals u and the residuals from the 

second step regression, say v = y - X48. Now, u may be expressed 
as 

(20) u ^ y - X f r v = (I — X (Z9X)'1Z9)y = (I — X(X9 X)'*X')y 

and v as, 

(21) v = y - X p = (I - X (X9X)-*X9)y 

But X = X—W where W is the matrix of residuals from the first 
stage regression of X on Z, so that 

(22) v = (I — X (X'X^X9 + W (X9 X)'1Xi)y 

= u + W piv 

4. R2 in IV Estimation 

We now turn to considering the coefficient of determination 
within the context of IV estimation. 

The concept of a coefficient of determination, be it in terms 
of raw data or in terms of data in mean-deviation form, requires 
that the total sum of squares of the dependent variable be 
decomposed into two disjoint components; one corresponding to 
the fitted part and the other to the residual part. In any case, 
where this decomposition cannot be obtained, a coefficient of 

(2) We should hasten to point out that if Kj* > Kx and, instead of regressing X on Z to 
form instruments we choose to select a subset from Z which has the same column 
dimension as X, then this selection must strictly be made from the KA* observed instru-
ments not from the set of all K* observed instruments. In other words, if a set of 
explanatory variables act as their own instruments then they must always be included 

in the Z matrix used in the first step regression; otherwise 3 i o r 3iv} w i l 1 n o t b e 

consistent. A formal demonstration is provided in the next footnote. 



METU STUDIES IN DEVELOPMENT 369 

determination will not be well-defined since it will not lie between 
0 and 1. Hence, our first task here will be to demonstrate that 
such a decomposition cannot be obtained for an IV estimator; 
therefore the usual R2 statistic based on the IV residuals u will 
not be well-defined. 

Assume either that the linear relation in (1) does not contain 
an intercept term or, if it does, that the data has been put into 
mean-deviation form so that y and X now represent the matrices 
for the transformed data. In any event, we shall express the total 
sum of squares as y'y and write it explicitly as, 

A A A 
(23) yy = y'y + uu + 2 yu 

For y'y to be expressible only as the sum of y'y and u'u, the 
A 

cross-term y'u must vanish. But. 

( 2 4 ) y'u = $ l v
y X ' u 

and X'u ^ 0 since the estimating equations in (2) do not require 
X'u = 0 to hold but for Z'u = 0 to hold. Thus, the required 
decomposition is not obtained. 

If one insists on using the conventional definitions of R2 one 
may obtain two different R2 measures from the decomposition 
in (23), namely 

(25) Rj = 1 — (uu/y'y) and R\ = y'y/y'y 

where the relationship between the two is 

(26) R] = R\ + (2y'u\y'y) 

If one obtains a perfect fit so that u = 0, then Ri2 = l. I n other 
words, Rx

2 has an upper bound of unity. Furthermore, since R2
2 

is always positive, Ra
2 may well be negative whenever 2y'u < 0 

A A A 
and | 2y'u | > y'y. 

We now turn to our second task of suggesting an R2 statistic 
which is well-defined. Turning once again to the decomposition 

in (23), we find that since X .= X + W, 
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(27) • y ' y = P i f = P i f ~X 9 x P i f + P i f ' I F ' # PiF 

and by ( 2 2 ) , 

( 2 8 ) && = + P i r ' W ' W P i v — 2 fiiv'W'v 

( 2 9 ) 2y>it = 2 ( $ I V >X~v — P i f 9X'W P i f J 

- 2 f p J F » i r© — P/F ' IF 9 W Pif j 

which upon substituting in (23) yields, 

( 3 0 ) y ' y = P i f ' ^ ' X P I F + - v ' v 

This is nothing but the decomposition one would obtain f rom 
the second step regression, and the resultant R2 would be 

( 3 1 ) R2
IV = P i f ' X ' X f a v l y ' y = 1 - f ® 9 W W 

The relationships between R i V
2 and, R i 2 and R 2

2 may be 
obtained as 

( 3 2 ) - ( y , J y \ y y ) — i P i v ' W ' W P I F l y ' y ) 

= 2?| — ( % i v ' W ' W % i v \ y ' y ) 

and 

( 3 3 ) R £ = R j - r r p i v ' W ' W P i f + 2 p i v ' y ' u ) l y ' y ) 

= R j — f f w ' w — l ) ' l > ) \ y ' y ) 

Hence, R i V
2 < R 2

2 , and R i V
2 ^ R i 2 depending upon whether u ' u ^ 

v'v. 
The justification w e have so far given for the use of R i V

2 is 
that it lies between 0 and 1. On the other hand , one may very 
well object that this R2 measure does not really measure the 
goodness-of-fit of the model in ( 1 ) to the data, but that of 
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(34); y = X $ + u 

i.e., the induced regression equation of the second step.(3) Hence 
we must provide justifications for its use that go beyond the fact 
that it lies in the [0,1] interval. For this purpose we should 
distinguish between the cases where C is not a consistent esti-
mator and where it is a consistent estimator. 

In the first case, the argument for using RIV
2 as the goodness-

of-fit measure in IV estimation would be based on how close W, 
the matrix of residuals from the first step regression would be 

to the zero matrix. If X is regarded as a proxy for X, then the 
better the proxy the smaller would be the difference between 
Riv2 and R,2 and R2

2
; i.e., the better would any R2 statistic lying 

between 0 and 1 approximate an R2 statistic based on the actual 
IV residuals u. Thus, in this case we are regarding RIV

2 as a purely 
descriptive device and argue that its reliability will be higher 
depending upon how well the instruments in the first step are 
chosen.(4) 

(3) The point made in the previous footnote may be formally demonstrated in terms of (34) 
above. We have. 

P/v = P + ( x ' x y i x ' u + (X'X)~X'W$ = p + ( x ' x y i x ' u 

since X'W = o. Now, let x ' = Qq, X2). Then 

(X'W)' = uxj 'wr, (x2'W)') 
But if x2 = (X2*, X2**) where X* consists of the disturbance - uncorrelated explanatory 
variables in equation (1) included in the first step regression and X2** consists of 
those which are left out, then 

W'X2 = (W'X2 *, W'X2 **) = (O, W'X2 **) ^ o 

and X'W ^ o, so that 

PJV — P ^ (XfX)-1X,u 
and our proof of consistency on p. 365 above will no longer hold. 

(4) One can, of course, make use of the all-purpose goodness-of-fit statistic suggested by 
Haessel (1978) which involves obtaining the correlation coefficient between y and y = 

A 
X g I V as an alternative descriptive statistic. The only problem with this statistic would 
be the difficulty of establishing a simple relation between it and the IV residuals u. 
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In the second case, the consistency of C implies that the first 
step regression involves a well-defined model as 

(35) X = ZC + W = X + W 

where it is assumed that (i) E (W) = 0, (ii) E (W'W) = Q 
which is positive definite, (iii) E(W'u) = w ^ 0, and (iv) E(Z'W) 
= 0. Consequently, the model in the second step regression may 
now be written as 

(36) y = X (3 + v 

where v = u + W p. If we now investigate the probability limit 
of the total sum of squares y'y we would obtain, 

(37) plim Tly'y = |3' (plim T'*X' X) (3 + plim rV® 

+ 2 plim X'v 

But, 

(38) plim T^X' X - C'MzzC 

plim T-Vu + (3' (plim T^W'W) (3 

+ 2 (3' plim T-JW'u 

a2 + P'ii (3 + 2 (3' w 

E(v'v) 

and 

(40) plim T^X'v = C'plim T]Z'v 

= C (plim TlZ'u +plim T-*Z'WP) 

- c'o = 0 

by A.3.b; 

(39) ptim T~Jv'v = 
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by A.3.c, and by (ii), (iii) and (iv) above. Hence, we may define 
a population coefficient of determination as, 

(41) p2 - p'C'MzzCpKplim T'2y'y) 

•= tfCMzzCWft'CMzzCl· + E(v'v)) 

Now, Riv2 would be a consistent estimator of p2 if C is a con-
sistent estimator of C, since in that case 

(42) plim T^X'X = (plim C') (plim T^Z'Z) (plim~C) 

= C'MzzC = plim T-JX ' X 
and r 

(43) plim T-h'v = plim T1vfv~(plim T-Jv X) (plim T^X'X)'1 

.(plim T^X'v) 

= plim rVv — O.iC'MzzCyKO 

= plim T-Jv'v = E(v'v) 

because 

(44) plim T-tX'v = (plim C') (plim T^Z'u + plim T^Z'Wfy = 0. 

We have thus established, 

Theorem 2 : Given the models in (35) and (36), (i) p2 as 
given in (41) is a population coefficient of determination for 
(36), and (ii) if C is consistently estimated and ¡3 is estimated by 
A 
(3iv, then RIV

2 is a consistent estimator of p2. 

The significance of RiV2 being a consistent estimator of p2 

lies in the fact that it may be utilised in testing the hypothesis 

Ho : p2 = 0 

which is the same thing as testing 

Ho : ¡3 = 0 

since p2 — 0 if and only if (3 = 0. We may use the following test 
statistic for this purpose; 
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(45) q = $IV'X'X Ptvlfv'vIT) - TRIV
2 / (1 -R1V

2 ) 

Following the reasoning in Carter and Nagar (1977: 43) we may 
A 

show that under H0, T1/2 ¡3IV converges in distribution to N(0, 
cr2C'MzzC) so that q converges in distribution to a x2 variable with 
k degrees of freedom. 

Remark 3 : Carter and Nagar (1977) have developed a 
coefficient of determination (henceforth denoted by RCN

2) for 
single equation estimation in simultaneous equation systems. 
Since almost all single equation estimation methods may be 
interpreted as IV estimators (see Klein (1955) for 2SLS, Goldber-
ger (1965) for the general k-class, and Brundy and Jorgenson 
(1971) for other IV estimators), the RiV2 statistic becomes a 
natural rival to the RCN

2 statistic. 

Let us give a brief description of RCN2. In terms of the notation 
utilised in this paper, X may be regarded as the matrix of 
explanatory variables in the structural equation considered so 
that (1) becomes that particular equation, and Z may be taken 
to be the matrix of all exogeneous variables in the system so that 
(35) may be regarded as the reduced form for X(5) and (36) as 
the partially restricted reduced form for y. The RCN

2 is then defined 
to be 

(46) Rcn2 = (P'X'XP+H'V) 

where ¡3 is a consistent, single equation estimator of the structural 

coefficients, X = ZC where C is any consistent estimator of the 

reduced form coefficients, and v = y - X ¡3. Note that if 0 is given 
by 2SLS then Riv2 and RCN

2 become identical. For any other 
consistent estimator of C the two statistics differ. This is because 
in the case of RCN2, Z always consists of all the exogeneous va-
riables in the system while in the case of RiV2, Z may contain 
instruments which have been previously obtained by a fitting 
procedure as in LIIV. 

(5) Strictly speaking the reduced form of relevance is for the submatrix of X corresponding 
to the explanatory current endogeneous variables. But in view of Remark 1, using (35) 
as the reduced form does not change the analysis. 
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Ö Z E T 

ARAÇ DEĞİŞKENLERLE TAHMİN VE BELİRLEME 
KATSAYISI 

Bu çalışmada ilkin Araç Değişkenler tahmin yönteminin iki aşamalı 
en küçük kareler (2AEKK) yöntemi olarak yorumlanabileceği gösterilmek-
tedir. İkinci olarak, Araç Değişkenler yöntemiyle tahmin edilen bir denklem-
den elde edilen artıklara dayanılarak hesaplanan belirleme katsayısının (R2) 
0 ile 1 arasında yer almadığı gösterilmekte ve bunun yerine, 2AEKK yorumu 
bağlamında, ikinci aşamada elde edilen R2'nin kullanılması önerilmektedir. 
Üçüncü olarak, söz konusu istatistiğin özellikleri incelenmekte ve Carter -
Nagar tarafından eşçözümlü denklem modelleri için önerilen R2 istatistiği 
ile olan ilişkisi saptanmaktadır. 


