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INSTRUMENTAL VARIABLES ESTIMATION
AND THE COEFFICIENT OF DETERMINATION

Haluk ERLAT*

We first demonstrate that Instrumental Variables
(IV) may be viewed as a two-step OLS estimator.
Subsequently, we show that the coefficient of
determination based on IV residuals does not lie
between 0 and 1. As an alternative we suggest the
use of the coefficient of determination from the second
step of the two-step OLS interpretation of IV. The
properties of said R? are investigated and its relati-
onship to the R? suggested by Carter and Nagar
for simultaneous equations is examined.

1. Introduction

The coefficient of determination (R» is a popularly used
statistic by applied econometricians. This fact alone warrants
showing extreme care in using the proper R? for the particular
statistical model utilised. For example, for the linear regression
model without an intercept term which has been estimated by
Ordinary Least Squares (OLS), the usual R? defined in terms of
the mean deviation form of the data is inappropriate. Such a
statistic would not lie between zero and unity (Aigner (1971 :
85-90)). The appropriate R? would be the one defined in terms
of raw data (i.e., data not in mean-deviation form).

Our concern here is with a similar problem. We shall consider
estimating a single linear equation by Instrumental Variables
(IV) and shall suggest an R® statistic which may be properly
utilised under such conditions. With this in mind, we shall first
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demonstrate that IV estimation may be viewed as a two-step
OLS procedure. This point is definitely not original; it would not
be far from the truth to admit that, for the present author, it
was inspired by the Two-Stage Least Squares (2SLS) estimation
method utilised to estimate a single linear equation within a
system of simultaneous equations. In the literature, this result
was obtained with a totally different motivation by Sargan (1958);
liviatan (1963) and Wallis (1967) suggested its use within the
ccentext of distributed lag estimation. Finally, a demonstration
In relation to the Limited Information Iterated Instrumental
Variables (LIIV) method is given by Dhrymes (1971 : 174-175).

We shall next show that the usual R® obtained by using IV
residuals is not the appropriate statistic to use since it does not
lie between 0 and 1 but between - oo and 1. We shall then suggest
using the coefficient of determination from the second step of
the two-step OLS interpretation of IV. The properties of said R?
will be investigated and compared with the R? statistic suggested
by Carter and Nagar (1977) for simultaneous equations.

2. The Model
We have the following single regression equation,
(1) y=XPB + u

where y is Tx1, X is TxK, 8 is Kx1 and u is Tx1. Letting k denote
the number of explanatory variables, K = k+1 if (1) contains
an intercept term and K = k if it does not.

The equation in (1) may constitute a single-equation model
implying a wunilateral ‘“causality” between the explanatory
variables and the dependent variable or it may be an identified
member of a system of simultaneous equations, interdependently
related to the other equations in the system. In either case, it
will be governed by the following set of assumptions :

A.1 The vector of disturbances u has zero mean and variance-
covariance martrix o%lk.

A.2 The matrix of observations on the explanatory variables,
namely X, is correlated with the vector of disturbances u, so
that plim T'X us0.
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A.3 Let there exist a TxK matrix of instrumental variables Z
such that,

a. the matrices ZZ and Z'X both have rank K,

b. plim T"Z’Z = M,, and plim T-'Z'X = M,. are finite and
nonsingular,

c. plim T'Z'u = 0,

d. T'2Zu converges in distribution to N (0, 5°M,,).

Assumption A.2 implies that at least one of the columns of
X is correlated with the elements of the disturbance vector u. We
know that this constitutes a violation of the basic assumptions of
the linear regression model and renders the OLS estimator of
8 biased and inconsistent.

Assumption A.3 indicates that the instrumental variables
satisfy the properties of being uncorrelated with the disturbance
term (A.3.c) and being correlated with the explanatory variables
(A.3.b). It further requires that T"?*Zu have a well - defined
asymptotic distribution (A.3.d). This last assumption is necessary
as the first three assumptions in A.3 may, in certain cases, not
be sufficient to establish the asymptotic distribution of the IV
estimator of . (For a detailed discussion and a case in point, see
Schmidt (1976 : 102-105).)

3. IV as Two-Step OLS

The IV principle seeks to provide us with estimators of j
which are at least consistent under A.2. The IV estimator is
usually derived in the following way.

Let u be a vector of residuals obtained by using any estimator

A A A
of B, say B; i.e, u = y - XB. If § is obtained by solving the following
set of K equations;

2 Zu = 2°y—2’XPp =10

A
then it would be the IV estimator of {3, namely By and, by A.3.a,
would be calculated as,

(3) Brv = (Z'X)1 Z'y
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The asymptotic distribution of Biv may be proved, under A.3
{b,c,d), to be

(4) N (B, 0? My M., M1)

(see Schmidt (1976 : 101-102)) where the covariance matrix would
be consistently estimated by

(5) o2 (2'X)12'Z (X' Z)!

and where

A
(6) ‘= (y — X Bw) (y —X Bw)|T
Now consider the following two-step procedure :

Step 1: Regress, by OLS, the columns of X on Z to obtain
the fitted values X = Z(Z'Z) 'Z'X.

Step 2: Regress, again by OLS, y on X to obtain
(7) B = (X’X)IXy = (X°Z(Z°Z)12°X)1X°Z(2°Z)1 2%
First, note that, by A.3.a,
(8) B = (ZX)IZZ (X°Z)IX°Z (ZZ)1Zy = (Z’X)12% = B
ie., B is identical to the IV estimator of .
Secondly, since § = 3 + (X’X) 'X’u, we may express,
(9) TH2 (B — B) = (T X’ X)1T12X°u

Hence, if we can show that, (a) plim T'X’X is finite and nonsin-
gular, and (b) T'’X’u has a well-defined asymptotic distribution,

we may then establish the consistency of 3 and the asymptotic

distribution of T"*(83 - 3).

To establish point (a) we take the probability limit of T"X'X;
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(10) phim T1X°X = plim (TX°Z(T- Z’Z)-'T-'2°X)
= MxzMzzMzx
by A.3.b and, of course, is nonsingular by the same assumption.
To establish point (b), we note that
(11) TI2Xy = TIX°Z(T12°Z) 1T 122

and, since by A.3b and d, plim T'X'Z — M,,, plim T'Z'Z = M,,
and T"/*Z'u is asymptotically normal with mean zero and co-
variance matrix ¢*M,,, it follows that, asymptotically,

(12) T PX'u ~ N, ¢ °MxzMz7'Mzx)
We may, then, conclude that (1) plim ['X'u = 0 so that
(13) phim B = B + (plim T- X’ X)! plim T Xu = P
i.e., B is consistent, and (2) that asymptotically,
(14) T!? (B — B) ~ N(O, 0 2(MxzMzz'Mzx)")

But note that, by A.3.b,
(15) 6 2(MxzMIMzx)! = o 2Mzx TMzzMxz !
~ A
so that 8 and Biv have the same asymptotic distribution. We have
thus proved,

Theorem 1: The two-step OLS estimator B;

i. is identical to éIV,

ii. is consistent and asymptotically distributed as
N (B, o (MxM.."M.x) "), which is identical to the asymptotic
distribution of é\w.

In proving the consistency of the two-step estimator, nothing
is mentioned about the consistency of the estimators in the first
step regression. Letting C denote the KxK matrix of coefficients
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from this regression, we have X = ZC where C = (Z'Z) *Z’X. Since
the consistency of the two-step estimator requires that plim

T7'X'u = 0, we take an alternative look at plim T'X'u;
(16) plim T X’u = (plim C’) (plim T-Z’u)

Since plim T'Z'u=0 by A.3.c, all that is needed for plim T-'X'u—0

to hold is that plim C = A < co. A need not equal C; i.e., C need
not be a consistent estimator of C. We have thus proved,

Corollary 1.1: The consistency of the two-step OLS version
of IV estimation does not require the coefficient estimators of
the first step regression to be consistent.

In the discussion above we said nothing about how the matrix
of instruments may be formed. In fact, the columns of the matrix
Z may consist of direct observations on the variables which act
as instrumental variables or they may be formed by some esti-
mation or fitting procedure. The latter situation may arise when
there are more than enough directly observed variables which
may act as instrumental variables. Denoting the matrix of all
such likely candidates by Z* which is TxK* and K* > K, any
TxK submatrix of Z* would qualify as the Z matrix but, in each
case, a certain amount of information would not be utilised in
consistenlty estimating . One way” of making use of all the
columns of Z* is to regress the columns of X on Z%, obtain the

matrix of fitted values, say X*, and use X" as the matrix of

instruments. X* obviously satisfies the requirements of an IV
matrix since its columns consist of linear combinations of the
columns of Z* which are uncorrelated with u, and since it is
obtained by maximising the multiple correlation between each
column of X and the columns of Z".

(1) Another way of obtaining fitted values, in.the context of simultaneous equations, is to
use the estimated restricted reduced form, as in the case of the LIIV estimator mentioned
above. The ensuing conclusions will not be applicable in this case, however, since the
titted values so obtained will not be orthogonal to the resultant residuals (see
Dhrymes (1971 : 171)).
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The IV estimator now becomes,

(17) Brv = (X*X)1X*y
S SACAVAIRV A RD FATU A ATEVALY
= (X*X*)IX*y

The last equality in (17) indicates that the present gw is also a
two-step OLS estimator. That it gives results identical to that
of the two-step OLS precedure described above is easy to de-
monstrate. Within the context of the two-step procedure described

previously, the first step would consist of regressing X on X* to
obtain

(18) X** = X* (X¥ X)IX*X

But X*'X* = X*X so that X** = X*, and the first step of both
two-step procedures yield identical results. Since the second step
is the same in both instances, we have demonstrated our con-
tention.

We may thus conclude;

Corollary 1.2: If the matrix of instruments Z consist only of
directly observable variables, then the two-step procedure of
Theorem 1 will still yield IV estimators even if the coulmn dimen-
sion of Z is greater than K.

Remark 1- We have, so far, couched our discussion in terms
of all the explanatory variables in equation (1) even though, in
interpreting A.2 we pointed out that the correlation between X and
u may only hold for a single column of X. This implies that if
only a subset of the columns of X are correlated with u, then the
remaining columns may act as their own instruments. Hence,
partitioning X as X = (X;, X,) where X; is TxK;, i = 1,2 and
Ki+K:;=K, the instrument matrix may be defined as Z = (Z;, X)
where Z; is TxK;* and K,* > K,. To see that Theorem 1, Corrolaries
1.1 and 1.2 still hold in this case, all we need to show is that, in
the first step of the two-step procedure, the predicted value of
K, is identical to itself. For this purpose define S, = (0", Ix,), where
0 is Ki"xK,, and express X, as X; = ZS,. Then,
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I

(19) X2 = Z (Z’Z).IZ,XZ = Z (Z’Z)'IZ,ZSZ = 7.3n

Thus, in the second step only the fitted values of X; need be used;
X, remains unaltered.®

Remark 2: We shall, for future reference consider the rela-
tionship between the IV residuals u and the residuals from the

second step regression, say v = y - X3. Now, u may be expressed
as

(20) u=y—Xprn=(1—X(2’X)2’)y = (I — X(X' X)X’ )y
and v as,
(21) v =y —XPp = (I — X (X'X)IX)y

But X = X—W where W is the matrix of residuals from the first
stage regression of X on Z, so that

(22) v = (I — X (X’X)IX + W (X’ X)X )y

=u + W Pw

4. R? in IV Estimation

We now turn to considering the coefficient of determination
within the context of IV estimation.

The concept of a coefficient of determination, be it in terms
of raw data or in terms of data in mean-deviation form, requires
that the total sum of squares of the dependent variable be
decomposed into two disjoint components; one corresponding to
the fitted part and the other to the residual part. In any case,
where this decomposition cannot be obtained, a coefficient of

(2) We should hasten to point out that if K,* > K; and, instead of regressing X on Z to
form instruments we choose to select a subset from Z which has the same column
dimension as X, then this selection must strictly be made from the K;* observed instru-
ments not from the set of all K* observed instruments. In other words, if a set of
explanatory variables act as their own instruments then they must always be included

in the Z matrix used in the first step regression; otherwise B lor (ry) will not be
consistent. A formal demonstration is provided in the next footnote.
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determination will not be well-defined since it will not lie between
0 and 1. Hence, our first task here will be to demonstrate that
such a decomposition cannot be obtained for an IV estimator;
therefore the usual R? statistic based on the IV residuals u will
not be well-defined.

Assume either that the linear relation in (1) does not contain
an intercept term or, if it does, that the data has been put into
mean-deviation form so that y and X now represent the matrices
for the transformed data. In any event, we shall express the total
sum of squares as y'y and write it explicitly as,

A , A A
(23) Yy =93y + uu + 2 yu
For y'y to be expressible only as the sum of v’y and u'u, the

A

cross-term y’'u must vanish. But.
1, /\ ’ ,

(24) Yu = Pw'X'u

and X'u # 0 since the estimating equations in (2) do not require
X'u =0 to hold but for Z'u =0 to hold. Thus, the required
decomposition is not obtained.

If one insists on using the conventional definitions of R? one
may obtain two different R? measures from the decomposition
in (23), namely

(25) R} =1 — (uuly'y) and RS = 3y’ yy'y

where the relationship between the two is

(26) R = R + (2y'uly’y)

If one obtains a perfect fit so that u = 0, then R.® = 1. In other
words, R has an upper bound of unity. Furthermore, since R,?
is always positive, R:> may well be negative whenever 2yu < 0
and | 2§r‘u | >§"3;\.

We now turn to our second task of suggesting an R? statistic

which is well-defined. Turning once again to the decomposition

in (23), we find that since X = X + W,
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27 'y = B a apwy = B X x Brv + Brv W W 1%
and by (22),

(28) P4 = 0’0 + Py W W By —2 P W’ o

(200 ' = 2By X% — pu X'Whr )

= 2(Bw Wy — B ’W’>W Brv )
which upon substituting in (23) yields,
(30) ¥y = Bw XX B + v’

This is nothing but the decomposition one would obtain from
the second step regression, and the resultant R* would be

(31) R, = Br’X' X B [yy =1 — (v’ 9yy)
The relationships between Ri”® and, R:*> and R.* may be
obtained as
/
(32) Ri = (y'3/yy) — (B 'W'W B [v'9)
2 A ’ 7 A ’

= R — (B 'W'W B [yy)
and
(33) RZ =R — ((Bw'W'W B + 2 Brv Y'u)y'y)

= R — ((Wu — 2"0)y'y)

Hence, By’ < R.%, and R’ = R,® depending upon whether u'u =

’.

v'v.
The justification we have so far given for the use of Ry’ is
that it lies between 0 and 1. On the other hand, one may very
well object that this R* measure does not really measure the
goodness-of-fit of the model in (1) to the data, but that of
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(34). Yy =XB+ u

1.e., the induced regression equation of the second step.® Hence
we must provide justifications for its use that g0 beyond the fact
that it lies in the [0,1]1 interval For this purpose we should

distinguish between the cases where C is not a consistent esti-
mator and where it is a consistent estimator.

In the first case, the argument for using Ri* as the goodness-

of-fit measure in IV estimation would be based on how close W,
the matrix of residuals from the first step regression would be

to the zero matrix. If X is regarded as a proxy for X, then the
better the proxy the smaller would be the difference between
R’ and R/ and Ry i.e., the better would any R? statistic lying
between 0 and 1 approximate an R? statistic based on the actual
IV residuals u. Thus, in this case we are regarding Ry’ as a purely
descriptive device and argue that its reliability will be higher

depending upon how well the instruments in the first Step are
chosen.®

(3) The point made in the previous footnote may be formally demonstrated in terms of (34)
above. We have.

Brv =B + (X'X)'X'u + (X'X) X'WB =B + (X'X)Xu

since X’W = 0. Now, let X = (X, X,). Then
X'W) = (X;/W), Xy'W))
But if ¥y = (Xy*, Xy**) where X* consists of the disturbance - uncorrelated explanatory

variables in equation (1) included in the first step regression and X,** consists of
those which are left out, then

’ ®
W'X: = (WX2*, WX2%%) = (0, Wx,**) = 0
and X’W £ 0, so that
X'Xx)1x’
Brv — BH£A( )X u
and our proof of consistency on Pp. 365 above will no longer hold.

(4) One can, of course, make use of the all-purpose goodness-of-fit statistic suggested by
Haessel (1978) which involves obtaining the correlation coefficient between y and y =

X Brv as an alternative descriptive statistic. The only problem with this statistic would
be the difficulty of establishing a simple relation between it and the IV residuals u.
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In the second case, the consistency of C implies that the first
step regression involves a well-defined model as

(35) X=2C+W=X+W

where it is assumed that () E (W) =0, (i) E (WW) = Q
which is positive definite, (iii) E(W'u) = w # 0, and (iv) E(Z'W)
= 0. Consequently, the model in the second step regression may
now be written as

(36) y=Xp +vo

where v = u + W 8. If we now investigate the probability limit
of the total sum of squares y'y we would obtain,

(37) plim T-y'y = B’ (plim T-1X' X) B + plim T-1"v

+ 2 p plim X'v

But,
(38) plim T1X' X = C'MzzC
by A.3.b;
(39) plim T-To'v = plim T-w'u + B’ (plim TW'W) p
+ 2 B’ plim T'W'u
o - PP 4+ 2B w
E(v'v)
and
(40) plim T1X'v = C'plim T-1Z"v

= G’ (plim TZ'u +plim T-1Z'WB)

=C0 =10
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by A.3.c, and by (i), (iii) and (iv) above. Hence, we may define
a population coefficient of determination as,

(41) p? = P'C'MzzCB|(plim T-y'y)
= P'C'MzzCP|(P'C’'Mz2CB + E(v'v))

Now, R’ would be a consistent estimator of p? if C is a con-
sistent estimator of C, since in that case

(42) plim T-1X' X = (plim C') (plim T-1Z'Z) (plim C)
= C,MZZC = plim TiX'X
and v
(43) plim T v’ v = plim T-o'v—(plim T-1v'X) (plim T-1X'X )1
(plim T1X'v)

= plim T’y — 0.(C’Mz2C)1.0

= plim T’y = E(v'v)
kbecause
(44) plim T1X'v = (plim C') (plim T-1Z'u + plim T1Z'WB) = 0.

We have thus established,

Theorem 2: Given the models in (35) and (36), (i) p* as
given in (41) is a population coefficient of determination for

(36), and (ii) if C is consistently estimated and 8 is estimated by
A
Brv, then Ry* is a consistent estimator of p>

The significance of R/’ being a consistent estimator of p?
lies in the fact that it may be utilised in testing the hypothesis

H,:p*°=0
which is the same thing as testing
H,: =0

since p* — 0 if and only if 3 = 0. We may use the following test
statistic for this purpose;
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A
(45) 9 =PBrX'X Brv/(v'v|T) = TR? | (I-Ry?)
Following the reasoning in Carter and Nagar (1977: 43) we may

A
show that under H,, T"* Bv converges in distribution to N (o,
¢*C’M,,C) so that q converges in distribution to a %? variable with
k degrees of freedom.

Remark 3: Carter and Nagar (1977) have developed a
coefficient of determination (henceforth denoted by Rey®) for
single equation estimation in simultaneous equation systems.
Since almost all single equation estimation methods may be
interpreted as IV estimators (see Klein (1955) for 2SLS, Goldber-
ger (1965) for the general k-class, and Brundy and Jorgenson
(1971) for other IV estimators), the Rwn? statistic becomes a
natural rival to the Rey® statistic.

Let us give a brief description of Rey’ In terms of the notation
utilised in this paper, X may be regarded as the matrix of
explanatory variables in the structural equation considered so
that (1) becomes that particular equation, and Z may be taken
to be the matrix of all exogeneous variables in the system so that
(35) may be regarded as the reduced form for X® and (36) as
the partially restricted reduced form for y. The Rex® is then defined
to be

(46) RN =B’ X"XB/ (BP'X'XB+ "0
where 3 is a consistent, single equation estimator of the structural

coefficients, X = ZC where C is any consistent estimator of the

reduced form coefficients, and v = y - X 8. Note that if 8 is given
ky 2SLS then R’ and Rex® become identical. For any other
consistent estimator of C the two statistics differ. This is because
in the case of Rcy’, Z always consists of all the exogeneous va-
riables in the system while in the case of Ry? Z may contain
instruments which have been previously obtained by a fitting
procedure as in LIIV.

(5) Strictly speaking the reduced form of relevance is for the submatrix of X corresponding
to the explanatory current endogeneous variables. But in view of Remark 1, using (35)
as the reduced form does not change the analysis.
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OZET

ARAC DEGISKENLERLE TAHMIN VE BELIRLEME
KATSAYISI

Bu calismada ilkin Ara¢ Degiskenler tahmin yoénteminin iki asamal
en kiiclik kareler (2AEKK) yéntemi olarak yorumlanabilecegi gosterilmek-
tedir. ikinci olarak, Arag Degiskenler yontemiyle tahmin edilen bir denklem-
den elde edilen artiklara dayamlarak hesaplanan belirleme katsayisimin (R?)
0 ile 1 arasinda yer almadig1 gésterilmekte ve bunun yerine, 2AEKK yorumu
baglaminda, ikinci asamada elde edilen R%¥nin kullanilmasi 6nerilmektedir.
Uciincit olarak, séz konusu istatistigin ozellikleri incelenmekte ve Carter -
Nagar tarafindan escéziimlii denklem modelleri icin 6nerilen R? istatistigi
ile olan iliskisi saptanmaktadir.



